• Surfaces functionalized with lasers / 2020

    A fast, ecofriendly way of de-icing aircrafts

    Press release (No. 4) - Fraunhofer IWS Dresden / 2.3.2020

    Direct Laser Interference Patterning (DLIP) can create complex, meandering surface structures on the micron and submicron scale to decrease ice accumulation and accelerate de-icing.
    © Fraunhofer IWS Dresden

    Ice on an aircraft’s surfaces can be a hazard. It increases drag and fuel consumption, disrupts aerodynamic flows, and decreases lift – which impairs the aircraft’s ability to fly safely. Researchers at the Fraunhofer Institute for Material and Beam Technology IWS, AIRBUS and TU Dresden have developed a laser process that fills two needs with one deed. On one hand, accumulated ice falls off by itself and on the other it takes less heat to de-ice surfaces. Direct Laser Interference Patterning permits surfaces to be structured in ways that effectively repel ice.

    more info
  • Detect cell changes faster

    Press release (No. 3) - Fraunhofer IWS Dresden / 26.2.2020

    Microscope image of healthy cartilage cells.
    © Fraunhofer IWS Dresden

    Scientists are researching how changes in cell cultures of cartilage and soft tissue can be detected in a cooperative research project of the University of Applied Sciences Zwickau (WHZ), the Fraunhofer Application Center for Surface Technologies and Optical Metrology (AZOM) and the Research Institute of Leather and Plastic Sheets (FILK).

    more info
  • Additively manufactured rocket engine features an aerospike nozzle for microlaunchers

    Press release (No. 2) - Fraunhofer IWS Dresden / 12.2.2020

    A design demonstrator for an additively manufactured aerospike nozzle.
    © Fraunhofer IWS Dresden

    Microlaunchers are an alternative to conventional launch vehicles. Able to carry payloads of up to 350 kilograms, these midsized transport systems are designed to launch small satellites into space. Researchers at the Fraunhofer Institute for Material and Beam Technology IWS in Dresden and TU Dresden’s aerospace experts developed an additively manufactured rocket engine with an aerospike nozzle for microlaunchers. The scaled metal prototype is expected to consume 30 percent less fuel than conventional engines. It will feature prominently at the Hannover Messe Preview on February 12 and in the showcase at booth C18 in hall 16 at the Hannover Messe from April 20 through 24, 2020.

    more info